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	�&�� :1: :f I J f J I−→ →  

����2 1y  2���y�� J,و 1y y≠  

    :
�@� �
	��( ) ( )1 1
2 1

2 1

f y f y

y y

− −−
−

  

$%�( ) ( )1 1
2 2 1 1x f y xو f y− −= =��
� ( ) ( )2 2 1 1f x yوf x y= = 

 $�2 1x xو I∈.  

 ���	�
( ) ( )

( ) ( )
1 1

2 1 2 1

2 1 2 1

f y f y x x

y y f x f x

− −− −
=

− −
  

    ( ) ( )2 1

2 1

1
f x f x

x x

=
−
−

  

 ���
( ) ( ) ( ) ( )1 1

2 1 2 1

2 1 2 1

f x f x f y f y
و

x x y y

− −− −
− −

 :
�@H� �+� ��7� 

������� f  1f −����
�� �+� ��7� .  

c(,���
�� :  
����� :  

����f��)� ��� �
5; ����
  ����� I  
1 ff

C   . ���� �AD������� �����C−� 8� (و

  

	�&��:        ���	�( )f

x
M C f x y

y

 
∈ ⇔ = 

 
  

                
( )

1

1

f

f y x

y
M C

x
−

−⇔ =

 ′⇔ ∈ 
 

  

�- ��� M ′��D��� �!   
M�2� � 8� (����� ������� 1f

C −�D���  ! fC ������� 

� 8� (�����.  
-����� 	��
�:  

�
�  ���	�� 
�( ) 22 1f x x x= + −  

1 (1�
�I� �
	�fF@�-  fC  

2 (����g
 �; f��� 1
,

4
I

− = +∞  
  

(a�- ��� g�� ���#� I3	�	�� �)� ��)�  �� .  
(b		� ( )1g x−  

(cF@�- 1g
C −  

191�
�I� f:  
���	� :( ) 4 1f x x′ = +  

+∞ 
1

4

− −∞ x 

+         0     9  f ′  

+∞  9

8

−  +∞  f  

  
2 ((a���	� g8 ����� ����� ���	 
 �; �7�.  

1�
�I� � 	) �A/ �� f���	� g��� �
5; ��	��4� I  
1 9

; ;
4 8

g
 −  −   +∞ = +∞        

  

���g�� ���#� 1
,

4

− +∞  
 �� 9

;
8

− +∞  
  

���g����� ���	 ��#�  :1 9 1
: ; ;

8 4
g− − −   +∞ → +∞      

  

(b	�	�� ( )1g x−:  

9 1
, ,

8 4
x y

 −  −    ∀ ∈ +∞ ∀ ∈ +∞          
  

���	�                    :( )1g x y− =  

( )
2

2

2

2

2

2 1

2 1

1 1

2 2

1 1 1

4 16 2 2

1 9 8

4 16

1 9 8

4 16
1

9 8
4

g y x

y y x

y y x

x
y y

x
y

x
y

x
y

y x

⇔ =

⇔ + − =

⇔ + = +
+⇔ + =

 ⇔ + − = + 
 

+ ⇔ + = 
 

 ++ =⇔ 
 + = +  

 ���	� 1

4
y

−≥��
� 1
0

4
y + ≥  

 ���1 9 8

4 4

x
y

++ =   

��
�9 8 1

4

x
y

+ −=  

��� :( )1 9 8 1

4

x
g x− + −=  

(3    
  
  
  
  

V(#������ :  
1 (��� �
�� ���� � ��$�*�� ������:  
a( ��!�� .�+ ���� sinArc us  

��
� ���	�� 

: ;

2 2

sin

f

x x

π π − →  
→

�
  

���	�f��� ����� ;
2 2

π π −  
  

( ) cosf x x′ =  

���	�( ) 0f x′ 〉��� ;
2 2

π π −  
�� �	� �� ,

2 2

π π− <	
�� ,�� 

���f��� �
5; ��	��4� ;
2 2

π π −  
.  

[ ], ; 1,1
2 2 2 2

f f f
π π π π        − = − = −               

  

-5 5

5
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���f�� ���#� ;
2 2

π π −  
 �� [ ]1,1− ����� ���	 ��#� �������  

[ ]1 : 1,1 ,
2 2

f
π π−  − → −  

.  

���	��1f −��)�� � ; ���	 ����  . �7� 4�
�sinArc.  

/��*�:  
���	�� ����
�� ���	�� ��)�� � ; ���	 ����  

[ ]: ; 1,1
2 2

sin

f

x x

π π − → −  
→

� �7� 4�
�  sinArc.  

  
����
:  

 
[ ]: ; 1,1

2 2

sin

f

x x

π π − → −  
→

     
[ ]1 sin : 1,1 ,

2 2

sin

f Arc

x Arc x

π π−  = − → −  
→

  

[ ]( ) ( ) ( )11,1 , :
2 2

sin sin

x y f x y f y x

Arc x y y x

π π −  ∀ ∈ − ∀ ∈ − = ⇔ =    
= ⇔ =

  

 (*��� �- ��
� ��!x�� [ ]1,1−		
�� sinArc x		
��  ! y 

��,
2 2

π π −  
>#�� E��� sin y x=  

* ([ ]
sin sin

1,1

Arc x y y x

x

= ⇒ =
 ∈ −

 
sin sin

,
2 2

y x Arc x y

y
π π

= ⇒ =

  ∈ −   

  

� �

:  

0 , sin 0 0 sin 0 0
2 2

sin1
2

1 1
sin ; sin

2 6 2 6

2
sin

2 4

3
sin

2 3

Arcو

Arc

Arc Arc

Arc

Arc

π π

π

π π

π

π

  ∈ − = =    

=

− = − =

=

=

  

#�����:  

1 (���	��sinArc�� ���#� [ ]1,1− �� ,
2 2

π π −  
  

2 (���	��sinArc��� ����� [ ]1,1−  

3 (���	��sinArc��� �
5; ��	��4� [ ]1,1−  

4 ([ ]sin 1,1ArcD = −  

5 ([ ]( )1,1 : sin
2 2

x Arc x
π π∀ ∈ − − ≤ ≤  

6 ([ ]( ) ( )1,1 : sin sinx Arc x x∀ ∈ − =  

7 (( ), : sin sin
2 2

x Arc x x
π π  ∀ ∈ − =    

  

8 (
[ ]( )1,1 : sin sin

sin sin

x Arc x Arc y x y

Arc x Arc y x y

∀ ∈ − = ⇔ =

〈 ⇔ 〈
  

9 (
, : sin sin

2 2

sin sin

x x y x y

x y x y

π π  ∀ ∈ − = ⇔ =    
〈 ⇔ 〈

  

10 (���	��sinArc��	
� .  
	�&��:  
�- �����sinArc��	
� :  

���x�� [ ]1,1−���	� [ ]1,1x− ∈ −  

�- �����[ ]( ) ( )1,1 sin sinx Arc x Arc x∀ ∈ − − = −  

 �����1 :  
���	�           :( )( )sin sinArc x x− = −  

( )( ) ( )( )sin sin sin sinArc x Arc x

x

− = −

= −
  

 ���( ) ( )( ) ( )( )1 sin sin sin sinArc x Arc x− = −  

 �- <�
� ( ) ( )2 sin
2 2

Arc x
π π− ≤ − ≤  

   ( )sin
2 2

Arc x
π π− ≤ ≤  

��
�  ( ) ( )3 sin
2 2

Arc x
π π− ≤ − ≤  

 ��)1 (  )2 (  )3 (�- B�����( )sin sinArc x Arc x− = −  
 ���	�� ������� sinArc��	
� .  

 �����2:  
 �- �����( )sin sinArc x Arc x− = −  

��������� 1�K������ ��
���:  
���	� :( )sin sinArc x Arc x− = −  

( )( ) ( )sin sin sin sinArc x Arc x⇔ − = −  

 �8( )sin sinArc x Arcو x−�� ,
2 2

π π −  
  

( )sin sinx Arc x

x x

⇔ − = −
⇔ − = −

  

 �2� ����� :
�/8� :
��
�� �- ���( ) ( )sin sinArc x Arc x− = −  

 �����3 :  
 �- �����( ) ( )sin sinArc x Arc x− = −  

$%�( )sinArc x y− = $� ,
2 2

y
π π ∈ −  

  

���	�:  

( )

( )
( )

( )

, sin sin
2 2

sin

sin

sin sin sin

, sin
2 2

sin

sin sin

y Arc x y y x

y x

y x

Arc y Arc x

y y Arc x

y Arc x

Arc x Arc x

π π

π π

  ∈ − − = ⇔ = −    
⇔ − =
⇔ − =

⇔ − =

  − ∈ − ⇔ − =    
⇔ = −
⇔ − = −

 �����4:   
���- ��� :( )sin sinArc x Arc x− = −  

�G�A� :�- ���� ���sinArc α β= �- ���� �- �+��   
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sin
2 2

و
π πβ β α− ≤ ≤ =  

���	�  :( ) ( )sin sin sin sinArc x Arc x− = −  

                    ( ) ( )1 sin sinArc x x− = −   

   ���	� sin
2 2

Arc x
π π− ≤ − ≤  

 ��)1(   )2 ( �- B�����( )sin sinArc x Arc x− = −  

-����� 	��
�:   ��� �� ���- :  

1 (2
sin sin

3
Arc

π 
 
 

  

2 (107
sin sin

3
Arc

π 
 
 

  

19 2
sin sin sin sin

3 3
Arc Arc

π ππ    = −    
    

  

      sin sin
3 3

Arc
π π = = 

 
  

�8,
3 2 2

π π π  ∈ −    
  

29 107 2
sin sin sin sin 35

3 3
Arc Arc

π ππ    = +    
    

  

  sin sin 35
3

Arc
ππ π  = + −  

  
  

       sin sin
3 3

Arc
π π = − = − 

 
   

�8,
3 2 2

π π π  − ∈ −    
  

 ���	�� �������� ��D����sinArc.   

  
   

b(%�
��� ��! .�+ ������  cosArc inus  
���	�� 
��
� :[ ]: 0,f π → �  

          cosx x→  
���	�f ��� ����� [ ]0,π  

  ( ) sinf x x′ = −  

���	�( ) 0f x′ 〈��� [ ]0,π �� �	�و0 ��  π�� 6<	
�� ,�� �f 

��� �
5; ���;���[ ]0,π.  

[ ]( ) ( ) ( ) [ ]0, , 0 1,1f f fπ π= = −    

���f �� ���#� [ ]0,π �� [ ]1,1−����� ���	 ��#� �������   :

[ ] [ ]1 : 1,1 0,f π− − →  
1f −<����� ��) � ; ���	 ����  .� �7� 4�
�cosArc.  

/��*�:  
���	�� ����
�� ���	�� <����� ��) � ; ���	 ����:  

[ ] [ ]: 0, 1,1f π → −� �7� 4�
�  cosArc  

 cosx x→  
   

����
: [ ] [ ]: 0, 1,1f π → −  [ ] [ ]1 : 1,1 0,f π− − →  

   cosx x→       cosx Arc x→    
[ ]( ) [ ]1,1 0, cos cosx y Arc x y y xπ∀ ∈ − ∀ ∈ = ⇔ =  

���x�� [ ]1,1−		
�� cosArc x		
��  ! y�� [ ]0,π E��� 
 >#��cos y x=.  

 *cos cosArc x y y x= ⇒ =  

 *[ ]
cos cos

0,

y x Arc x y

y π
= ⇒ =

 ∈
  

� �

:  

cos 0
2

Arc
π=      cos1 0Arc =  

1
cos

2 3
Arc

π=      3
cos

2 6
Arc

π=  

2
cos

2 4
Arc

π=      cos 1Arc π− =  

1 2
cos

2 3
Arc

π− =   3 5
cos

2 6
Arc

π− =  

1����/:  
19���	�� cosArc�� ���#� [ ]1,1− �� [ ]0,π  

29���	�� cosArc��� ����� [ ]1,1−  

39���	�� cosArc��� �
5; ���;��� [ ]1,1−  

49 [ ]cos 1,1ArcD = −  

59 [ ]( )1,1 0 cosx Arc x π∀ ∈ − ≤ ≤  

69 [ ]( ) ( )1,1 cos cosx Arc x x∀ ∈ − =  

79 [ ]( ) ( )0, cos cosx Arc x xπ∀ ∈ =  

89 [ ]( )1,1 cos cosxوy Arc x Arc y x y∀ ∈ − = ⇔ =  
        cos cosArc x Arc y x y〈 ⇔ 〉  

99 [ ]( )0, cos cosxوy x y x yπ∀ ∈ = ⇔ =  
       cos cosx y x y〈 ⇔ 〉  
109���	�� cosArc��	
� "  ��) 4 " 1��� .  

�G�A� :�- ���� ���a b=��  �- ���� �- �+cos cosa b= 
 bوa  � �������[ ]0,π.  

���
:  

 ����11
cos cos

3
Arc π 

 
 

  

[ ]

11
cos cos cos cos 4

3 3

cos cos
3

cos cos 0,
3 3 3

Arc Arc

Arc

Arc

ππ π

π

π π π π

    = −    
    

  = −  
  

   = = ∈   
   

  

���	�� �������� ��D����cosArc    
  
  
  
  
  
  
  
  
  
  

sinx x→ 

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

sinx arc x→ 

cosx x→ 

cosx arc x→ 
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c(� .�+ ������ ���tanArc gente.  

���	�� 
��
� :: ,
2 2

f
π π − →  

�  

tanx x→    

���	�f��� ����� ,
2 2

π π −  
  

( )1 2, 1 tan 0
2 2

x f x x
π π − ∀ ∈ − = + 〉  

  

���f��� �
5; ��	��4� ,
2 2

π π −  
  

( )

] [
2 2

, lim , lim
2 2

,

f f x f
π π

π π
+ −

− −

     − =        

= −∞ +∞ = �

  

���f�� ���#� ,
2 2

π π −  
 �� �  

����� ���	 ��#� ������� 1 : ,
2 2

f
π π−  → −  

�  

1f −� �7� 4�
� �G�� � ; ���	 ���� tanArc.  

/��*�:  
���	�� ����
�� ���	�� �G�� � ; ���	 ����  

   : ,
2 2

f
π π − →  

�� �7� 4�
�  tanArc  

tanx x→  
  

����
:  

   : ,
2 2

f
π π − →  

�    1 : ,
2 2

f
π π−  → −  

�  

tanx x→      tanx Arc x→  

( ) , tan tan
2 2

x y Arc x y y x
π π  ∀ ∈ ∀ ∈ − = ⇔ =    

�  

 (*���x�� �		
�� tanArc		
��  ! y�� ,
2 2

π π −  
 ,��� 

tan y x=.  
 (*tan tanArc x y y x= ⇒ =  

(*
tan tan

,
2 2

y x Arc x y

y
π π

= ⇒ =

  ∈ −   

  

� �

:  

tan 0 0Arc =    tan 3
3

Arc
π=  

tan1
4

Arc
π=    3

tan
3 6

Arc
π=  

( )tan 1
4

Arc
π− = −  ( )tan 3

3
Arc

π− = −   

�#����:  

1 (���	��tanArc�� ���#� � �� ,
2 2

π π −  
  

2 (���	��tanArc��� ����� �  
3 (���	��tanArc��� �
5; ��	��4� �  
4 (tanArcD = �  

5 (( ) tan
2 2

x Arc
π π∀ ∈ − 〈 〈�  

6 (( ) ( )tan tanx Arc x x∀ ∈ =�  

7 (( ), tan tan
2 2

x Arc x x
π π  ∀ ∈ − =    

  

8 (( ) tan tanxوy Arc x Arc y x y∀ ∈ = ⇔ =�  
        tan tanArc x Arc y x y〈 ⇔ 〈  

9 (, tan tan
2 2

xوy x y x y
π π  ∀ ∈ − = ⇔ =    

  

       tan tanx y x y〈 ⇔ 〈  
10 (���	��tanArc��	� .  

	�&��:��!
� �+� sinArc  
����
:  

�- ���� ���a b=�- ���� �- �+�� tan tana b= bوa 

��� �������,
2 2

π π −  
  

���� � -����
�� ���
���tanArc:  
  
  
  
  
2 (������ 	
 ��!�� ����n ièmeracine n  

a(/��*� :  
���� *n∈�  

���	�� 
��
� ::f + →� �  
             nx x→  

 *���	�f��� ����� +
�  

*( ) 1nf x nx −′ =  

���	�( ) 0f x′ 〉��� +
� �� �	� �� 0<	
�� ,�� .  

���f��4� ��� �
5; ��	+
�.  

 *[ [( ) [ [0, 0,f +∞ = +∞  

���f�� ���#� +
� �� +

� ����� ���	 ��#� �������  
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